14 Chuyên đề Hình học Toán 9 – HK1, HK2 và luyện thi. Tổng hợp bộ chuyên đề giúp các em nắm vững kiến thức toán hình học 9 hiệu quả, dành cho HK1 và HK2, đồng thời cũng làm nền tảng cho kỳ thi chuyển cấp vào 10. Mỗi chuyên đề tổng hợp chi tiết gồm tóm tắt lý thuyết Chuyên đề đường tròn lớp 9 có lời giải. Bởi. Thuvienhoclieu.com - 24-01-2018. 0. Bài tiếp theo Bài tập đường tròn hình học lớp 9 PtMJq5K. Nội dung Text Hình học lớp 9 Chuyên đề đường tròn CHUYN Ề 3 ỜNG TRN BI 1XC ỊNH MỘT ỜNG TRN. * ịnh ngha ờng trn, hnh trn - ờng trn tm O, bn knh R l hnh gồm cc iểm cch O R một khoảng bằng R, k hiệu O ; R, hoặc O O * ịnh ngha hnh trn - Hnh trn l hnh gồm cc iểm nằm trn ờng trn v các iểm nằm bn trong ờng trn . R O + Tnh chất của ờng trn - Tm ờng trn l tm ối xứng của trn . C - Bất kỳ ờng knh no cng l t xứng của B ờng trn. A V dụ Cho hnh vẽ A Xc ịnh tm ối xứng, t g của ờng trn. D Giải - O l tm ối xứng. - AB, CD l ủa ờng trn. * Cung và dây c C D - Giả sử A, iểm nằm trn ờng trn tm O. Hai iểm ny chia ờng trn thnh hai phần mỗi phần gọi l một A O cung trn Gọi tắt l cung. - oạn thẳng nối hai mt của cung l dy cung. - Trong một ờng trn ờng knh l dy cung lớn nhất. * Sự xc ịnh ờng trn, ờng trn ngoại tiếp tam gic - Một ờng trn ợc xc ịnh khi biết tm v bn knh của ờng trn  hoặc khi biết một oạn thẳng l ờng knh của ờng trn . A O B V dụ 1 Cho hai iểm A v B Vẽ một ờng trn i qua hai iểm . C Giải Xc ịnh trung iểm O của oạn thẳng AB => O; AB 2 O Trang 1 A B V dụ 2 Cho ba iểm A, B, C khng thẳng hng Vẽ một ờng trn i qua ba iểm . Giải Vẽ cc ờng trung trực ba cạnh của ABC O l giao của ba ờng trung trực cch ều ba ỉnh của tam gic => O l tm của ờng trn i qua i qua ba iểm A, B, C. - Qua ba iểm khng thẳng hng ta vẽ ợc một ờng trn. Ni cách khác qua ba ỉnh của một tam gic ABC bao giờ cng dựng ợc một ờng trn xc ịnh. Ta ni ờng trn  ngoại tiếp tam gic, hay tam gic  nội tiếp ờng trn. BÀI 2 TNH CHẤT ỐI XỨNG CỦA ỜNG TRN. a Tm ối xứng A’ ối xứng với A qua O. Vậy tm O l tm ối xứng của ờng trn. A' O b Trục ối xứng C’ ối xứng với C qua ờng knh thẳn . A Do  ờng knh AB l một trục  ng của O O C I C' B Vậy, bất k knh no cng l một trục ối xứng của ờng trn; ờng trn c v số trục ối xứng. c ờng knh v dy của ờng trn. ịnh l 1 Trong cc dy của một ờng trn, dy E lớn nhất l ờng knh. AB CD; AB EF F A B O C D d Quan hệ vung gc giữa ờng knh v dây. ờng knh vung gc với dy th i qua trung iểm của dy Trang 2 ịnh l 2 Trong một ờng trn, ờng knh vung A gc với một dy th i qua trung iểm của dy ấy. O AB l ờng knh, CD l một dy của O; Nếu AB CD tại I thì IC = ID C I D B ịnh l 3 Trong một ờng trn, ờng knh i qua A trung iểm của một dy khng i qua tm th vung gc với dy ấy. O AB l ờng knh, CD l một dy khc ờng knh của O; C I D Nếu AB CD = I B Và IC = ID thì AB CD V dụ A ờng knh AB i qua trung iểm của dy nhng khng vung gc với CD. V dy CD i qua tm O O C B BÀI 3 DY CUNG V K OẢNG CCH ẾN TM VỊ TR TNG ỐI ỜNG THẲNG V ỜNG TRN 1. Dy cung v khoảng c + ịnh l Tro ột n D K ịnh l 1 - Hai d y g nhau th cch ều tm C - Hai dy cch ều tm th bằng nhau. O ịnh l 1 - Dy lớn hn th gần tm hn A B - Dy gần tm hn th lớn hn H +V dụ Cho AB v CD l 2 dy khc ờng knh của ờng trn O ; R gọi OH,OK theo thứ tự l cc khoảng cch từ O ến AB ,CD - dây AB = CD OH = OK - dây AB > CD OH R + R’ b Nếu O ựng O’ th OO’ EF 4. Lin hệ giữa cung v dy 4. 1. ịnh l 1 Với hai cung nhỏ trong một ờng trn hay trong hai ờng trn bằng nhau a Hai cung bằng nhau cng hai dy bằng nhau b Hai dy bằng nhau cng hai cung bằng nhau ịnh l 2 Trang 6 Với hai cung nhỏ trong một ờng trn hay trong hai ờng trn bằng nhau a Cung lớn hn cng dy lớn hn b Dy lớn hn cng cung lớn hn BÀI 6 TIẾP TUYẾN CỦA ỜNG TRN Dấu hiệu nhận biết tiếp tuyến của ờng trn. + ờng thẳng v ờng trn chỉ c một iểm chung + Khoảng cch từ tm của một ờng trn ến ờng thẳng bằng bn knh của ờng trn + ịnh l Nếu một ờng thẳng i qua một iểm của ờng trn v vung gc với bn knh i qua iểm  th ờng thẳng ấy l một tiếp tuyến của ờng trn. V dụ 1 Hnh 38. ờng thẳng xy i qua iểm C của ờng tròn 0 v vung gc với bn knh OC ờng thẳng O xy l tiếp tuyến của ờng trn 0 x y C - Tnh chất của hai tiếp tuyến cắt nha nh 39 + A cch ều hai tiếp iểm B c + Tia AO l tia phn gic c bởi hai tiếp tuyến AB, AC. A O +Tia OA l tia p i hai bn knh OB, OC. B Hình 39 V dụ 2 Trn hnh 43 ta c BA v CA l hai tiếp tuyến của ờng trn 0. Theo tnh chất tiếp tuyến ta c AB OB, AC OC . Hai tam gic vung OAB v OAC c OB = OC , OA l cạnh chung. Do  OAB = OAC cạnh huyền – cạnh gc vung. Suy ra AB = AC. OAB OAC nn AO l tia phn gic của BAC . AOB AOC nn OA l tia phn gic của BOC . Trang 7 BÀI 7 GC NỘI TIẾP V MỐI LIN HỆ GIỮA GC NỘI TIẾP V CUNG BỊ CHẮN + ịnh ngha gc nội tiếp - Gc nội tiếp l gc c ỉnh nằm trn ờng trn v hai cạnh chứa hai dy cung của ờng trn . - Cung nằm bn trong gc ợc gọi l cung bị chắn. V dụ A A C B O B O C A Hình 42 a;b BAC l gc nội tiếp. + Tnh chất của gc nội tiếp Trong một ờng trn, số o của gc nội t a số o của cung bị chắn. O C 1 B V dụ s BAC = s BC 2 + Hệ quả Trong một ờng trn - Cc gc nội tiếp bằn cc cung bằng nhau. - Cc gc nội iế một cung hoặc chắn cc cung bằng nhau th bằng nhau. - Gc nội ti hn hoặc bằng 90 0 c số o bằng nửa số o của gc ở tm cng chắn một cung. - Gc nội tiếp chắn nửa ờng trn l gc vung. V dụ A D A D H J 0 B 0 B I F F C E C Hình 44. Hình 45. E Hình 44 BAC = EDF => sd BC = sdEF Hình 45 BAC = BJC = BIC và EDF = EHF mà BAC = EDF nên Trang 8 BAC = BJC = BIC = EDF = EHF A D 0 B 0 F C Hình 46 Hình 47 E 1 Hình 46 BAF = BOF 2 Hình 47 DCF =900 do DE l ờng knh BÀI 8 GC TẠO BỞI TIA TIẾP TUYẾN Y CUNG - Gc tạo bởi tia tiếp tuyến v dy cung xAB học yAB - Số o gc tạo bởi tia tiếp tuyến v dy c 1 S xAB = S AnB 2 0 500 V dụ Cho AnB c số o 50 => 250 2 BÀI 9 GC C  Ở BN TRONG ỜNG TRN GC C ỈN Ở BN NGOI ỜNG TRN UNG CHỨA GÓC I. Gc ỉnh c ở bn t ong ờng trn 1 ặc iểm D A F - ỉnh ở bn trong ờng trn m n - Hai cạnh l 2 ct tuyến . O B C 2 ịnh l Số o của một gc c ỉnh ở bn trong ờng trn bằng nửa tổng số o của hai cung bị chắn Nối AD ta c DFB l gc ngoi của tam gic ADF sd AmC sd BnD Nên DFB = DAB ADC = 2 sd AmC sd BnD Vậy DFB = 2 * Ch  Gc ở tm l trờng hợp ặc biệt của gc ở ỉnh c ở bn trong ờng trn chắn 2 cung bằng nhau Trang 9 II. Gc c ỉnh ở bn ngoi ờng trn 1ặc iểm - ỉnh ở bn ngoi ờng trn - Hai cạnh ều l ct tuyến hoặc 1 cạnh l ct tuyến, 1 cạnh l tiếp tuyến hoặc hai cạnh l tiếp 2 ịnh l Số o của một gc c ỉnh ở bn ngoi D ờng trn bằng nửa hiệu số o của hai cung bị chắn A E O m a Hai cạnh ều l ct tuyến n C Nối AB Ta c DAB l gc ngoi của EAB B DAB = DEB + ABC sd DnB sd AmC D A E Ta có DEB = DAB - ABC = 2 O m b Một cạnh l ct tuyến ,1 cạnh l tiếp tuyến n Nối AC Ta c DAC L gc ngoi của EAC DAC = DEC + ACE C A sd DnC sd AmC DEC = DAC - ACE = 2 O E c Hai cạnh ều l tiếp tuyến m Nối AC Ta c CAx l gc ngoi của EA sd AnC sd AmC AEC = CAx - ACE = 2 C III. Bi ton qy tch “cung chứa g * Bài toán Cho oạn thẳn c 00 < < 1800. Tm quỹ tch tập hợp cc iểm M thỏa mn AM cng ni quỹ tch cc iểm M nhn oạn thẳng AB cho trớc dới  * Kết luận Vớ AB v gc 00< BÀI 10 TỨ GIC NỘI TIẾP niệm Một tứ gic c bốn ỉnh nằm trn một ờng trn ợc gọi l tứ gic nội tiếp ờng trn Gọi tắt l tứ gic nội tiếp b. ịnh l + Thuận B Tứ gic ABCD nội tiếp ờng trn 0 A + C = B + D = 180 A O + ảo Tứ gic ABCD c 0 0 A + C = 180 hoặc B + D = 180 D C Tứ gic ABCD nội tiếp ờng trn * Muốn chứng minh một tứ gic nội tiếp ờng trn Tứ gic nội tiếp ờng trn c tổng số o của ối diện bằng 180 0. Hai ỉnh lin tiếp nhn hai ỉnh cn lại dới ng ổi. Hai ỉnh ối diện nhn hai ỉnh cn lại dới c vung. Bốn ỉnh của tứ gic cch ều một iểm h. Chứng tỏ tứ gic l hnh thang cn, hn hật, hnh vung. V dụ 1 Hnh thang cn, hnh chữ nhật, vung l cc tứ gic nội tiếp ợc ờng tròn . A A B A B O O D C D C C Trang 11 BÀI 11 Ộ DI ỜNG TRN- DIỆN TCH HNH TRN 1. ộ di ờng trn. R l bn knh của ờng trn tm O thì C = 2 R. d l ờng knh của trn tm O thì C = d. L một số v tỉ, gi trị gần ng của n l 3,14. V dụ 1 Chu vi ộ di vnh xe ạp c ờmg knh 650 mm l C = 3,14 .650 = 2041mm = 2,041m 2. Cng thức tnh ộ di cung trn. Trn uờng trn bn knh R, ộ di l của một cung n0 ợc tnh theo cng thức Rn l= 180 V dụ 2 0 ộ di cung trn 60 của ờng trn c bn kn 3, l= = 2,1dm 180 3. Cng thức tnh diện tch hnh trn S = R2 R l bn knh của ờng trn tm L một số v tỉ, gi trị gần của n l 3,14. V dụ 3 Tnh diện tch của hnh t knh 2cm Giải S = R2 56 cm2 hoặc S = 22 = 4 cm2 A 4. Cng thức tnh diện tch hnh quạt trn R n0 R2 n lR Sq = hay Sq = O 360 2 B R l bn knh của ờng trn tm O L một số v tỉ, gi trị gần ng của n l 3,14. o l l ộ di cung trn n V dụ 4 Tnh diện tch hnh quạt trn của ờng trn c bn knh 6cm biết số o cung l 360. R2 n Sq = ?, R = 6cm, n0 = 360, Cng thức Sq = 360 Kết quả Sq 11,3 cm2 Trang 12

chuyên đề hình học lớp 9